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ITERATED LOGARITHMS OF 
ENTIRE FUNCTIONS 

BY  

C H A R L E S  H O R O W I T Z  

ABSTRACT 

We characterize those sequences {f. } of entire functions satisfying f. = exp(f.+0 
for all n. 

I. Introduction and preliminary lemmas 

It is a fundamen ta l  result in complex  analysis that  a non-vanishing entire 

funct ion f admits  the represen ta t ion  f = e g for  some ent i re  funct ion g. Indeed ,  in 

this case, the funct ions 

z---~g(z)+2nrri ,  n E Z  

give an infinite set of such logar i thms of f. If one  of these logar i thms,  which we 

deno te  by f~, is itself nonvanishing,  then we can write 

f = et'; f~ = er2; f2 entire.  

O n e  can conceive of this process  cont inuing indefinitely; if so, we should arr ive 

at a sequence  of ent i re  funct ions  {f,}, n = 0, 1,2 . . . .  with f0 = f and with 

(1) f , = e  fo+', n = 0 , 1 , 2 . . . .  

Professor  K. Kunen  (pr ivate  communica t ion )  has asked whe the r  such sequences  

exist in any but the trivial case f,  --= constant .  O u r  purpose  in this no te  is to 

charac ter ize  all such sequences  {/, }. Indeed ,  we shall p rove  the following result. 

THEOREM. For each sequence of complex numbers {a,}~=0 with a, = e ~ 

n = 1, 2 . . . . .  and for each nonconstant entire function c~ with &(O) = O, there exists 

a unique sequence of entire functions {f,}7=o satisfying 
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(i) f,  = e r-+' for all n, 

(ii) f,  (0 )=  a, for all n, 

4r (iii) lim ~ = &, uniformly on compact subsets of  the set {z ~ C: 49'(z) ~ 0}, 

(iv) !im F'(z)  - 1. 
- ~ ' ( z ) -  

Every sequence of nonconstant entire functions {f,} satisfying (i) may be obtained 

in this way, for some unique 4> and {a,}. 

The  proof  of the T h e o r e m  is somewhat  long, and will be accomplished via 

several lemmas. 

At the outset,  we make some general  remarks.  We note  first that if our  fo is 

nonconstant ,  then there is at most one possibility for fj, since Picard's T h e o r e m  

shows that at most one of the logari thms of fo is nonvanishing. Inductively,  we 

see that f,, de termines  the entire sequence  {f.}. 

We also note  here  that if we can construct  one nonconstant  sequence  f.  as in 

(1), then we immediately obtain a mult i tude of o ther  examples;  indeed,  for any 

entire function ':b, {f. ~ ~b} is such an example.  

The  next observat ion is fundamental .  It follows from (1) that f~ = fof', and by 

induction that 

(2) f[, = f,,f, f2" '"  f . f ' . . l ,  n = O, 1,2, o.. .  

Thus  if the sequence of numbers {a,} is given, with an = f , (0) ,  and hence,  with 
i , a,  = e "~ for n = 0, 1 , 2 , . . . ,  then f/,(0) de termines  all of the numbers  f , (0) ,  

indeed 

(3) f',(0) = ak f,',(0). 
\ k  = 0  

In the sequel we shall need est imates on the behaviour  of f', for  large n. This 

leads naturally to the study of products  like the one  appearing in (3). Indeed,  we 

shall prove the following iemma. 

LEMMA 1. Let {a,,} be a sequence of  complex numbers satisfying a, = e ~"~', 

n = 0, 1 ,2 .  �9 .. Then for all nonnegative integers N, we have 

where C is a positive constant depending on {an}, but not on N. 

In view of (3), the implication of lemma 1 on the sequence in (1) is that for  all 
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z E C, f',(z)-+O as an exponent ia l  function of n. T he  lemma itself will emerge  as 

a corollary to a sequence  of prel iminary lemmas.  

DEFINITION. For  z E C, define e(")(z)= z, and for n = 1, 2 , - . . ,  define recur-  

sively e("~(z)= exp (e  ~" ~)(z)). 

LEMMA 2. Let z E C. Then for n = l , 2 , . . . ,  

I-I e(k)(z) I I m z  I. Ilme("'(z) < 
k = l  

PROOV. Let  z = x + i y  with x and y real. Then  

IIm e* I = I exsin Y l --< leXyl = I e*Imz I, 

which proves the result for  n = 1. 

In general ,  since e(~)(z) = exp[eCk-')(z)], the case n = 1 implies 

Jim e(")(z)[ _-< ] e (" ) (z) Im e (" l)(z) 1 

<= l e(")(z ) e ~. I)(z)Im e("-2)(z)I 

<='"<= I IImzl. 

LEMMA 3. Le tbo~C,  Ibol<l.Ol, anddefineasequencebk, k = O ,  1 , 2 . . . , b y  

bk = e~k)(bo). 

Let n be the smallest integer such that I b.-~t >= 1.01 while ] b. I < 1.01. (Tacitly we 
assume that such an n exists.) Then 

n - I  

(4) l-I I bk 1 ==- (1.01)". 
k = O  

PROOF. We begin with some explanatory  remarks  which will prove  useful in 

the sequel.  While it may happen that [bl [ < 1.01, we have always that I b:[ ~ 1.01. 

Indeed 

t b21 = I e ~' I = exp [e R~ b,,co s Im bo] _-> exp [e-~ ~ 1.01] > 1.01. 

It follows, in particular,  that the number  n in the s ta tement  of the t heo rem 

always satisfies n > 2, and may be al ternatively defined as the smallest integer  

greater  than one such that t b, I < 1.01. 

Turning to the proof  itself, we deno te  by l the smallest integer  with 

1 -<_ l N n - 2 and with Jim bt I ->- 1.01. That  such an l exists follows f rom the chain 

of implications 
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Ib._,l_-> 1.01, I b . l <  1.01 f f  larg b,_,l > 1.01 f f  l imb._21> 1.01. 

By the choice of l, I Imbk [ < 1.01 for k = 0, 1 . . .  l -  1. Since 1.01 < rr/3, we 

conclude that for k = 1 , 2 , 3 - . . / ,  

Rebk >�89 I. 

Thus, for such k, 

f bk +, I = e as b~ > e ~f~l. 

By a simple induction, we obtain that 

I bt+l I > exp (~ exp (�89 e x p . . .  (�89 exp (Re b0))) �9 �9 �9 ), 

where there are a total of (1 + 1) exp's in the latter expression. 

It is easily seen that regardless of the value of Re b0 (between - 1.01 and 1.01), 

the fact that l _-> 1, together with the above, yields that 

By Lemma 2, 

whence 

I b,+, I ---> (1.01) '+'. 

Since 

Ibk I~ 1.01 

the proof is complete. 

for l + 2 < k < - n - 1 ,  

LEMMA 4. Let { a,}, n = O, 1, 2 . . . ,  be a sequence of complex numbers satisfy- 

ing a, = e ""~' for all n. Assume that l aol >- 1.01 but that levi  < 1.01. Then for all 

nonnegative integers N, 

N 

(5) l-I l a~ I -> (1.01) ~§ 
n ~ O  

PROOF. The proof is by induction on N, the result being true for N = 0 by 

hypothesis. Suppose that (5) has been verified up to N - I. If l aN I --> 1.01, we are 

finished. If not, let k be the largest nonnegative integer less than N such that 
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l ak [ _-> 1.01 while I e ok ] < 1.01. Our assumptions concerning ao show that such a k 

exists. On the other hand, the induction hypothesis implies that 

k - 1  

1--I fan 1= > (1.01) k. 
n = o  

Meanwhile, Lemma 3 implies that 

n = N  

FI [a. [ _-> (1.01) N-k+'. 
n = k  

Combining the above product inequalities, we complete the induction step. 

A moment 's  reflection shows that Lemma 1, stated earlier, follows from 

Lemma 4, and hence, by the remarks following the statement of Lemma 1, we 

have succeeded in obtaining information about the derivatives of our original 

functions {f,}. The following related result has the advantage of a conceptual, 

function-theoretic proof. 

Suppose that {f,}, n = 0, 1 , . . . ,  is a sequence of entire functions LEMMA 5. 

satisfying 

f0 = e(")(f,) for all n. 

Then lim,~| = 0 uniformly on compact subsets of C. 

PROOF. Given ~ > 0 and 0 < R < ~, we must find an integer no such that if 

n > no, then If '(z)l  < ~ for ]z ] < R. To do so, choose S > R such that 4zr/S < e, 
and let M = supj~j<2s [fo(z)]. Then choose no so large that e(n~ M. Now we 

note that if Im(fn(z ) )=  2zrki for some z ~ C, and for some integers n and k, 

with n -> 1, then fn-~(z) is real and positive, whence fo(Z)> e("-~)(0). It follows 

that for n > no and for [zl<2S, I m f , ( z )  is never of the form 2zrki. Thus each 

point Zo with I zol < R is the center of a disc of radius S over which the variation 

of Imfn(z)  (n > no) does not exceed 2zr. Using the Herglotz formula for f ' (z)  in 

terms of Im {fn(z)- f,(zo)}, we obtain the estimate 

I f'.(z0)l--- 4zr/S < ~. Q.E.D. 

The following is the key lemma on the behavior of our f'~. 

LEMMA 6. With {f,} entire functions satisfying (1) 

(6) ~ I f'(z)[<or for all z E C ,  
,=o 

and the convergence is uniform on every compact subset of C. 
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PROOF. The pointwise convergence in (6) is an immediate consequence of 

formula (2) together with Lemma 1. Since uniform convergence on compact 

subsets is equivalent to uniform convergence in a neighborhood of each point, 

we shall be content to prove the latter. So we choose Zo E C, and we suppose first 

that for some k, 

(7) Ifk(zo)l > 1.01 while leI~(~o)l < 1.01. 

By the continuity of fk, these relations must remain valid in some relatively 

compact neighborhood N of zo. From Lemma 4, we conclude that if z ~ N and 

if 1 => k is an integer, then 
l 

1-I I fo(z)t--> (1.ol) '-k+'. 
n = k  

Thus, by formula (2), 

If',(z)/=< c(1.01) k-', z ~ N, l _-> k, 

where c = sup~ t f;,t. It follows immediately that E~=o I f ' ,(z)t converges uniformly 

in N. 

It remains to consider the case where (7) holds for no k. In this case one sees 

that 

If,(zo)/=>l.01 for n=>2. 

It then follows easily from Lemma 5 that the inequality 

If,(z)l  > 1.005, n -> 2, 

persists for all z in a neighborhood N of z0. Using formula (2), we obtain 

uniform convergence on N of the sum in (6). 

LEMMA 7. With {f,} as in Lemma 6, lim,~= f~ f ' .  exists uniformly on every 

compact subset of C which is disjoint from the zero set of f~, and thus this limit 

defines a meromorphic function on all of C. 

P~OOF. First we remark that by virtue of formula (2), the zeros of f~ are 

identical with the zeros of f'. for all n. It also follows, by logarithmic differentia- 

tion of that formula, that 

+ + '  = ~ ' z + _ ~ + ' " + f ' +  ~ f  f ( n = 1 , 2 . - . ) .  
(S) f ;  = f._, + f ,  f"  

Thus l i m . ~ f : / f ' .  = f~/fo-E:=,f '~, and the latter sum converges uniformly on 
compact sets by Lemma 6. 

The following is our basic existence result. 
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LEMMA 8. For every sequence {an}::0 of  complex numbers satisfying a, = 

e ~ for all n, there exists a unique sequence of  entire functions {f,}::o such that 

f .  = e:"*' and f.(O) = an for all n, f~,(O) = 1, and l i m . ~ f : / f "  = 0 uniformly on 

compact  subsets o f  C. 

PROOF. We shall construct our sequence {f,} by a familiar technique from 

differential equations. Assuming that the sequence indeed exists, we shall 

determine from our hypotheses what must be the successive derivatives of each 

f, at the origin, thus, incidentally, proving uniqueness. Then we shall construct 

formal power series for the f,, using these hypothetical derivatives. Finally we 

shall show that the power series thus formed represent actual entire functions 

with all of the desired properties. 

Slightly abusing notation, let us denote by f ~  the k th derivative at the origin 

of our (as yet hypothetical) function f,. Now the values 

f~(0) = a. 

are given, and the values 

)-' 
(9) f~) = ap 

I .p=O 

can be read off formula (2) and the hypothesis that f ; (0)= 1. To calculate the 

higher derivatives f ~ ,  we note that formula (8) together with the condition 

l im.~f ' ,Tf ' .  = 0 yields 

(10) f ~ =  ~ r jn 1-,, n = 0 , 1 , 2 . . . .  
m = n + l  

Formula (9) and Lemma 1 show that the above sums are absolutely convergent, 

and thus, that the numbers f ~  are well defined. Most importantly, (10), viewed 

as a functional identity involving a uniformly convergent sum, can be repeatedly 

differentiated, thus yielding a family of identities expressing each derivative f ~  

(n _-> 0, k _-> 2) in terms of lower order derivatives. Such a family of identities 

permits a recursive determination of all of the numbers f ~ ,  which completes the 

proof of our uniqueness assertion. 

To show that the f ~  obtained by the above process are indeed the successive 

derivatives of some entire functions, we must estimate their size. To that end, we 

define the numbers 
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b. = If~'[ 

m = n + l  

n = 0 , 1 , 2 . . . .  

By formula  (9) and L e m m a  1, the r, are finite and indeed lim,=.| r. = 0. 

We claim that 

(i) Jf~'l--< (k - 1)~ b .r .  ~-' ,  
n = 0 7 1 " ' "  

(ii) I f~)[  < (k - 1)! r~, 
. . . .  l k = 1 , 2 - . .  

(i) and (ii) are proved by induct ion on k, the case k = 1 holding for all n by 

definition of b, and r.. Assume  that (i) and (ii) have been proved for all n when 

k = 1, 2 �9 �9 s + 1, for some s _--> 0. We note  that according to formula  (10) and the 

Leibniz rule of differentiation, we have for  each n 

j m  J n  �9 
.wl= +l  q=O 

Using the induction hypothesis,  we obtain that 

< ~  s! 
q=o q! ( s -  q)[(s - q)! b,r~,-q(q! rq, § 

= ~ .  = b . r .  , s !b . r~  +' ( s +  1)! s§ 
q=O 

which verifies (i) with k = s + 2. 

Similarly, 

m = n + l  m = +1 q=O q t = m + l  

q=O m = n + l  t = n + l  

s[ (s_q)!r~_q+~(q!)r~§ q)! q~O q .  

= ( s  + 1)!  . 2  r n  

which verifies (ii) with k = s + 2. 
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It follows immediately from (i) that the power series a, + X~=~f~zk /k !  has 

radius of convergence at least 1/r,. We denote by f, the analytic function defined 

by this series, and we note that from (ii) it follows easily that X~=of" converges 

uniformly on compact subsets of the disc {Iz[< 1/ro}. In this disc, we can 

therefore consider the functions 

f " -  ~ f'f'p, n = O ,  1 ,2 , . . . .  
p=n+l 

From the way our f, were defined, it is clear that these functions and all of their 

derivatives vanish at the origin. The conclusion is that for I z I < 1/ro 

(11) f"(z) / f ' , (z)  = ~ f',(z), n = 0 , 1 , 2 , . . . .  
p=n+l  

In particular, for all n, we have in {I z I<  1/ro} 

fUf ' , , -  f"+,]f'§ = f'§ 

From this formula and from our choice of values at zero for f. and f"  

(n = 0, 1 ,2 , . . . )  it follows easily that 

(12) f , ( z ) = e  t.+'~z~, n = 0 , 1 , 2 , - . . ;  [z[<l /ro .  

Now we recall that f . ( z )  is actually analytic in [ z [ <  1/r.. Since lim.~= r, = 0, 

formula (12) may be employed to give an analytic continuation of each f, to an 

entire function. Meanwhile, we have trivially that f , (0 )=  a, for all n and that 

f~(0)-- 1; so it remains only to prove that 

(13) lira f"./f'. = 0 

uniformly on compact subsets of C. However, Lemma 6 now shows that the sums 

on the right hand side of formula (11) converge uniformly on compact subsets of 

C, and so by analytic continuation, (11) is an identity of entire functions for each 

n. (13) follows immediately, completing the proof of Lemma 8. 

II. The main result and its ramifications 

We are finally prepared to prove our main result, whose statement we repeat 

for convenience. 

THEOREM. For each sequence of complex numbers {a,}~=o with a, = e ~"*', 
n = 1,2,. �9 and for each nonconstant entire function r with &(0) = 0, there exists 
a unique sequence of entire functions {g,}~=o satisfying 
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(i) g. = eS-+' for all n, 
(ii) g. (0)= a. for all n, 
(iii) lim.~=g~]g'.= 4,"/4,' uniformly on compact subsets of the set {z 

c :  6 ' ( z ) ~  0}, 

(iv) limz~og~(z)/4,'(z)= 1. 
Every sequence of nonconstant entire functions {g.} satisfying (i) may be 

obtained in this way, for some unique 4, and {a.}. 

PROOF. The theorem makes essentially three assertions, concerning exis- 

tence, uniqueness, and completeness. 

For the existence proof, we merely note that if {f,} is the sequence constructed 

in Lemma 8 corresponding to the numbers {a,}, then the sequence {g,} = {f, o 4,} 

has all of the properties (i)---~ (iv). In particular, 

" o 
lim (f"~ 4, )'-' = lim ~ ' ~ , 6 '  4,"1 4," 
~   tq,oo4,) 

since lim,~= f~f ' ,= O. This proves (iii), and (iv) follows from the fact that 

f '(0) = 1. 
Turning to the uniqueness assertion, we follow the lines of the proof of 

Lemma 8. Indeed, assuming that the g, exist, we show how to recover their 

power series from the hypotheses of the theorem. We use primarily the formula 

, t , 4 , t ,  
(14) g " =  ,.=.+, g.g, .+g.--~,  n = 0 , 1 , . . . ,  

which is derived from formula (8). If 4,'(0) ~ 0, then 4,"/4,' is analytic near 0, and 

the process of recovering the g. is essentially identical to the process used in the 

proof of Lemma 8. On the other hand, if 4,'(0)= 4,"(0) . . . . .  4,tk~(0) = 0, it 

follows from (iv) that all of these derivatives vanish likewise for go, and by 

repeated differentiation of our formula (2), we see that the same holds for each 

g.. Moreover, if 4,~k+'~(O)= a ~ O ,  then (iv) yields that g~ok+~ = a, and a 

differentiated version of formula (2) shows that 

I . s ~ O  

Meanwhile, in this case, 4,"/4,' = k/z  + F, where F is analytic in a neighbor- 

hood of zero. Thus we have the relations 

(14') g'~-k(g' , /z)= ~ g',,g'+g',F. 
r r l = n + l  
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But a check of power series shows that since g',(0) = 0, the sth derivative at zero 

of the function g'2z is just g~+:)(O)/(s + 1). Thus differentiation of formula (14') 

yields the equality 

g ~ + 2 ' ( 0 ) [ l - ~ +  1 ] =  expression involving only F and deriva- 

tives of the g,~ up to order s + 1. 

All of the numbers g~+2~(0) are already known up to and including s -- k - 1, and 

so the above formula permits a recursive determination of the remaining 

derivatives, proving our uniqueness assertion. 

It remains to prove the completeness assertion of the theorem; namely, that 

given entire functions {g,} satisfying (i), we can produce an appropriate (and 

unique) sequence {an} and function 6 to fit the paradigm of our theorem. Of 

course the a, are chosen as g.(0). To find 6, we recall from the proof of Lemma 

7 that 

gTg', = g',;/g'o- ~ g" = 
g';_ 

iim G 

where G is a well-defined entire function. We require an entire function 6 

satisfying 

f )  tt - -  rt 

6--7 = !im g','_ g0_ G. -~ g" g~ 

This equation may be integrated; indeed, we obtain the general solution 

(15) 6( z )=  cl + c2 g:,(w)exp{ - foW 

and it follows easily that cl and c2 may always be chosen, uniquely, so as to 

secure condition (iv) and the requirement ,/~(0)= 0. In fact, cl = 0 and c2 = 1. 

This completes the proof of the theorem. 

We remark that the integrations indicated in formula (15) can be carried out in 

a semi-explicit manner to obtain the rather striking result 

(16) 6 ( z )  = cl + c21im g,(z)-  g,(a) ' 

where c~ ~ C is arbitrary, g~)(a) is the first non-vanishing derivative of g~ at a, 

and c~ and c2 are constants depending on c~. 

It is not difficult to translate our theorem to the case where the {g~ } and 6 are 

defined in an arbitrary simply connected domain in C. Here  one shows that the 
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only possibilities for {g,} are sequences of the form {f. o 4)}, where the sequence 

{f,} is as in Lemma 8, and this time 4) is an arbitrary function analytic in the 

given domain. The formula (16) for recovering ~b remains valid in this more 

general situation. The obstacle to extending our result to multiply connected 

domains is that our completeness proof depended on the fact that holomorphic 

entire functions have holomorphic, single valued, integrals. This fact, of course, 

has no direct analogy in the case of multiply connected domains. 

In conclusion, we should like to discuss one interesting special case of our 

theorem. That is the case where the entire functions {g,} considered have a 

common value, say a, at the origin. This necessitates e ~ = a, an equation which 

has infinitely many complex solutions. Indeed, the entire function ze-"  is zero 

only for z = 0, and hence, by Picard's Theorem, it takes the value 1 infinitely 

often. It is easily verified that all of these fixed points of the exponential have 

modulus greater than 1.01, corroborating Lemma 1. It happens that the 

functions {f,} constructed in Lemma 8 with respect to the constant sequence {or} 

satisfy the interesting functional equation 

(17) f , ( a z  ) = e t.('). 

Indeed, this follows from the uniqueness assertion of Lemma 8. For if {f.(z)}7=0 

is the sequence thus constructed, then it and the sequence {/, (az)}~=l satisfy the 

same "initial conditions", and hence must be identical. It follows by induction 

that in this case, 

L(z)= fo(zm"). 

Using the above relations, one easily verifies the conclusions of Lemmas 6 and 7 

in our special case. 

We remark without proof that the sequences {f. o ~} with f. as above and 4) 

entire can be shown to be identical with the sequences {g,} where the g. are 

entire, g. = e ~-~', and lim,~| exists. 

Finally, we note that if we set 

h.(z) 

with jr as in (17), then we obtain solutions to the functional equation 

h ( z  + 1)= e h(~). 
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